View Chapter

Chapter 65 — Domestic Robotics

Erwin Prassler, Mario E. Munich, Paolo Pirjanian and Kazuhiro Kosuge

When the first edition of this book was published domestic robots were spoken of as a dream that was slowly becoming reality. At that time, in 2008, we looked back on more than twenty years of research and development in domestic robotics, especially in cleaning robotics. Although everybody expected cleaning to be the killer app for domestic robotics in the first half of these twenty years nothing big really happened. About ten years before the first edition of this book appeared, all of a sudden things started moving. Several small, but also some larger enterprises announced that they would soon launch domestic cleaning robots. The robotics community was anxiously awaiting these first cleaning robots and so were consumers. The big burst, however, was yet to come. The price tag of those cleaning robots was far beyond what people were willing to pay for a vacuum cleaner. It took another four years until, in 2002, a small and inexpensive device, which was not even called a cleaning robot, brought the first breakthrough: Roomba. Sales of the Roomba quickly passed the first million robots and increased rapidly. While for the first years after Roomba’s release, the big players remained on the sidelines, possibly to revise their own designs and, in particular their business models and price tags, some other small players followed quickly and came out with their own products. We reported about theses devices and their creators in the first edition. Since then the momentum in the field of domestics robotics has steadily increased. Nowadays most big appliance manufacturers have domestic cleaning robots in their portfolio. We are not only seeing more and more domestic cleaning robots and lawn mowers on the market, but we are also seeing new types of domestic robots, window cleaners, plant watering robots, tele-presence robots, domestic surveillance robots, and robotic sports devices. Some of these new types of domestic robots are still prototypes or concept studies. Others have already crossed the threshold to becoming commercial products.

For the second edition of this chapter, we have decided to not only enumerate the devices that have emerged and survived in the past five years, but also to take a look back at how it all began, contrasting this retrospection with the burst of progress in the past five years in domestic cleaning robotics. We will not describe and discuss in detail every single cleaning robot that has seen the light of the day, but select those that are representative for the evolution of the technology as well as the market. We will also reserve some space for new types of mobile domestic robots, which will be the success stories or failures for the next edition of this chapter. Further we will look into nonmobile domestic robots, also called smart appliances, and examine their fate. Last but not least, we will look at the recent developments in the area of intelligent homes that surround and, at times, also control the mobile domestic robots and smart appliances described in the preceding sections.

How would you choose the best robotic vacuum cleaner?

Author  Erwin Prassler

Video ID : 729

This video identifies some criteria that a consumer might use to decide on the purchase of a specific domestic cleaning robot.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

A ride in the Google self-driving car

Author  Google Self-Driving Car Project

Video ID : 710

The maturity of the tools developed for mobile-robot navigation and explained in this chapter have enabled Google to integrate them into an experimental vehicle. This video demonstrates Google's self-driving technology on the road.

Chapter 39 — Cooperative Manipulation

Fabrizio Caccavale and Masaru Uchiyama

This chapter is devoted to cooperative manipulation of a common object by means of two or more robotic arms. The chapter opens with a historical overview of the research on cooperativemanipulation, ranging from early 1970s to very recent years. Kinematics and dynamics of robotic arms cooperatively manipulating a tightly grasped rigid object are presented in depth. As for the kinematics and statics, the chosen approach is based on the socalled symmetric formulation; fundamentals of dynamics and reduced-order models for closed kinematic chains are discussed as well. A few special topics, such as the definition of geometrically meaningful cooperative task space variables, the problem of load distribution, and the definition of manipulability ellipsoids, are included to give the reader a complete picture ofmodeling and evaluation methodologies for cooperative manipulators. Then, the chapter presents the main strategies for controlling both the motion of the cooperative system and the interaction forces between the manipulators and the grasped object; in detail, fundamentals of hybrid force/position control, proportional–derivative (PD)-type force/position control schemes, feedback linearization techniques, and impedance control approaches are given. In the last section further reading on advanced topics related to control of cooperative robots is suggested; in detail, advanced nonlinear control strategies are briefly discussed (i. e., intelligent control approaches, synchronization control, decentralized control); also, fundamental results on modeling and control of cooperative systems possessing some degree of flexibility are briefly outlined.

Impedance control for cooperative manipulators

Author  Fabrizio Caccavale, Pasquale Chiacchio, Alessandro Marino, Luigi Villani

Video ID : 67

This is a video showing experiments on impedance control for cooperative manipulators. Reference: F. Caccavale, P. Chiacchio, A. Marino, L. Villani: Six-DOF impedance control of dual-arm cooperative manipulators, IEEE/ASME Trans. Mechatron. 13, 576-586 (2008).

Cooperative grasping and transportation of an object using two industrial manipulators

Author  Francesco Basile, Fabrizio Caccavale, Pasquale Chiacchio, Jolanda Coppola, Alessandro Marino

Video ID : 69

This video shows an example of cooperative grasping and transportation of an object using two industrial manipulators. A two-layer hierarchical, kinematic control is adopted, based on a suitable task formulation for general multi-arm systems. Reference: F. Basile, F. Caccavale, P. Chiacchio, J. Coppola, A. Marino: A decentralized kinematic control architecture for collaborative and cooperative multi-arm systems, Mechatronics, 23, 1100-1112 (2013).

Chapter 4 — Mechanism and Actuation

Victor Scheinman, J. Michael McCarthy and Jae-Bok Song

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.2–4.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

Robotic milking system

Author  Lena Rosenbohm

Video ID : 643

Fig. 4.12 DeLaval Cow Milking System features a hydraulic robot with machine-vision guided positioning.

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Teleoperated hmanoid robot - HRP

Author  O. Miki, T. Itoko, K. Sawada, T. Nishiyama, K. Hira, S. Nakayama, H. Inaba, M. Sudo, K. Tanie, K. Yokoi, S. Hira, H. Hirukawa, H. Inoue, S. Tachi

Video ID : 318

This video shows a tele-existence system to teleoperate a humanoid robot HRP using multimodal feedback and integrated whole-body perception and control. Presented at ICRA 2001.

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

Using ROS4iOS

Author  François Michaud

Video ID : 419

Demonstration of the integration, using HBBA (hybrid behaviour-based architecture), of navigation, remote localization, speaker identification, speech recognition and teleoperation. The scenario employs the ROS4iOS to provide remote perceptual capabilities for visual location, speech and speaker recognition. Reference: F. Ferland, R. Chauvin, D. Létourneau, F. Michaud: Hello robot, can you come here? Using ROS4iOS to provide remote perceptual capabilities for visual location, speech and speaker recognition, Proc. Int. ACM/IEEE Conf. Human-Robot Interaction (2014), p. 101

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

DART: Dense articulated real-time tracking

Author  Tanner Schmidt, Richard Newcombe, Dieter Fox

Video ID : 673

This project aims to provide a unified framework for tracking arbitrary articulated models, given their geometric and kinematic structure. Our approach uses dense input data (computing an error term on every pixel) which we are able to process in real-time by leveraging the power of GPGPU programming and very efficient representation of model geometry with signed-distance functions. This approach has proven successful on a wide variety of models including human hands, human bodies, robot arms, and articulated objects.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

The Mobipulator

Author  Siddhartha Srinivasa et al.

Video ID : 367

The video shows a dual-differential drive robot that uses its wheels for both manipulation and locomotion. The front wheels move objects by vibrating asymmetrically while the rear wheels help to move the robot and the object around the environment.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Learning how to be a learning companion for children

Author  Cynthia Breazeal

Video ID : 560

This video demonstration describes a project whereby we train a policy via learning-by-demonstration for a social robot to serve as a learning companion for young children during free-form educational play. Training data was captured during a Wizard-of-Oz paradigm where the robot played the color-mixing game app with 183 children. Once the model was trained on this data, we did a human-participant study with 85 children to compare the behavior and efficacy of the autonomous robot versus a Wizard-of-Oz-controlled robot. We also compared the children's behavior to just playing the game app without a robot learning companion. We found that the presence of the robot learning companion resulted in deeper exploration of the subject matter of the app (color mixing) and more behaviors targeted to this activity (e.g., there was more random tapping of the app when the robot was not present). The autonomous robot's behavior was not statistically different from the Wizard-of-Oz-controlled robot.