View Chapter

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobotics Demonstrator D4 welding robot assistant

Author  Martin Haegele, Thilo Zimmermann, Björn Kahl

Video ID : 383

SMErobotics: Europe's leading robot manufacturers and research institutes have teamed up with the European Robotics Initiative for Strengthening the Competitiveness of SMEs in Manufacturing - to make the vision of cognitive robotics a reality in a key segment of EU manufacturing. Funded by the European Union 7th Framework Programme under GA number 287787. Project runtime: 01.01.2012 - 30.06.2016 For a general introduction, please also watch the general SMErobotics project video (ID 260). About this video: Chapter 1: Introduction (0:00); Chapter 2: Job arrives (0:43); Chapter 3: Programming of weld seams (selection of seams) (01:08); Chapter 4: Scanning of seams (01:45); Chapter 5: Error recovery (02:13); Chapter 6: Welding I (02:33); Chapter 7: Welding II (02:57); Chapter 8: Seam inspection (03:32); Chapter 9: Statement (in German with English subtitles) (04:06); Chapter 10: Outro (04:32); Chapter 11: SMErobotics statement (04:55). For details, please visit: http://www.smerobotics.org/project/video-of-demonstrator-d4.html

Chapter 78 — Perceptual Robotics

Heinrich Bülthoff, Christian Wallraven and Martin A. Giese

Robots that share their environment with humans need to be able to recognize and manipulate objects and users, perform complex navigation tasks, and interpret and react to human emotional and communicative gestures. In all of these perceptual capabilities, the human brain, however, is still far ahead of robotic systems. Hence, taking clues from the way the human brain solves such complex perceptual tasks will help to design better robots. Similarly, once a robot interacts with humans, its behaviors and reactions will be judged by humans – movements of the robot, for example, should be fluid and graceful, and it should not evoke an eerie feeling when interacting with a user. In this chapter, we present Perceptual Robotics as the field of robotics that takes inspiration from perception research and neuroscience to, first, build better perceptual capabilities into robotic systems and, second, to validate the perceptual impact of robotic systems on the user.

Active in-hand object recognition

Author  Christian Wallraven

Video ID : 569

This video showcases the implementation of active object learning and recognition using the framework proposed in Browatzki et al. [1, 2]. The first phase shows the robot trying to learn the visual representation of several paper cups differing by a few key features. The robot executes a pre-programmed exploration program to look at the cup from all sides. The (very low-resolution) visual input is tracked and so-called key-frames are extracted which represent the (visual) exploration. After learning, the robot tries to recognize cups that have been placed into its hands using a similar exploration program based on visual information - due to the low-resolution input and the highly similar objects, the robot, however, fails to make the correct decision. The video then shows the second, advanced, exploration, which is based on actively seeking the view that is expected to provide maximum information about the object. For this, the robot embeds the learned visual information into a proprioceptive map indexed by the two joint angles of the hand. In this map, the robot now tries to predict the joint-angle combination that provides the most information about the object, given the current state of exploration. The implementation uses particle filtering to track a large number of object (view) hypotheses at the same time. Since the robot now uses a multisensory representation, the subsequent object-recognition trials are all correct, despite poor visual input and highly similar objects. References: [1] B Browatzki, V. Tikhanoff, G. Metta, H.H. Bülthoff, C. Wallraven: Active in-hand object recognition on a humanoid robot, IEEE Trans. Robot. 30(5), 1260-1269 (2014); [2] B. Browatzki, V. Tikhanoff, G. Metta, H.H. Bülthoff, C. Wallraven: Active object recognition on a humanoid robot, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul (2012), pp. 2021-2028.

Chapter 10 — Redundant Robots

Stefano Chiaverini, Giuseppe Oriolo and Anthony A. Maciejewski

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different firstorder methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e.g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e.g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

Free-floating autonomous valve turning (task-priority redundancy control + Task Concurrence)‬

Author  CIRS UdG

Video ID : 814

This video records the experimental validation of a controller for the GIRONA500 underwater vehicle manipulator system demonstrating an autonomous floating-base valve-turning manipulation application. The method is based on kinematic control, avoiding the need for a complex, and difficult-to-obtain, hydrodynamic model. The method relies on the decoupled control of the vehicle and manipulator velocities using a combination of the task-priority redundancy resolution and the task concurrence approaches.

Chapter 59 — Robotics in Mining

Joshua A. Marshall, Adrian Bonchis, Eduardo Nebot and Steven Scheding

This chapter presents an overview of the state of the art in mining robotics, from surface to underground applications, and beyond. Mining is the practice of extracting resources for utilitarian purposes. Today, the international business of mining is a heavily mechanized industry that exploits the use of large diesel and electric equipment. These machines must operate in harsh, dynamic, and uncertain environments such as, for example, in the high arctic, in extreme desert climates, and in deep underground tunnel networks where it can be very hot and humid. Applications of robotics in mining are broad and include robotic dozing, excavation, and haulage, robotic mapping and surveying, as well as robotic drilling and explosives handling. This chapter describes how many of these applications involve unique technical challenges for field roboticists. However, there are compelling reasons to advance the discipline of mining robotics, which include not only a desire on the part of miners to improve productivity, safety, and lower costs, but also out of a need to meet product demands by accessing orebodies situated in increasingly challenging conditions.

Autonomous loading of fragmented rock

Author  Joshua Marshall

Video ID : 718

This video shows autonomous loading of fragmented rock, first on a 1-t capacity Kubota loader at Kingston, Canada, followed by an implementation on a 14-t capacity Atlas Copco ST14 LHD in an underground mine at Kvarntorp, Sweden. The algorithm used in these demonstrations is based on force-feedback sensed in the loader cylinder pressures and utilizes an admittance control structure.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Whole quadruped manipulation

Author  Toru Omata et al.

Video ID : 366

The video shows a quadruped robot that can use two of its legs for whole-body manipulation of objects. The robot can stand on the knee joints of its hind legs, grasp an object with the two front legs, and adjust its center of mass by rotating the hind knee joints to manipulate it. This enables the robot to place an object on its stomach/back and use the hind legs again for walking so that the object can be moved around in the environment.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Nonverbal envelope displays to support turn-taking behavior

Author  Cynthia Breazeal

Video ID : 559

This video is a demonstration of Kismet's envelope displays to regulate turn-taking during a "conversation". In this video, Kismet is "speaking" with one person, but also acknowledges the presence of a second person. The robot is not communicating an actual language, so this video is more reminiscent of speaking with a pre-linguistic child. The nonverbal turn-taking behavior is what is being highlighted.

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

Flight stability in aerial redundant manipulators

Author  Christopher Korpela, Matko Orsag, Todd Danko, Bryan Kobe, Clayton McNeil, Robert Pisch, Paul Oh

Video ID : 693

Aerial manipulation tests conducted by the Drexel Autonomous Systems Lab.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

Automatic plant probing

Author  Guillem Alenya, Babette Dellen, Sergi Foix, Carme Torras

Video ID : 95

This is a video showing the automatic probing of plant leaves (to measure chlorophyll) with a robotic arm, using a time-of-flight camera and a spadmeter, which are mounted on top. The first part shows plant probing during the final experiments of the EU project GARNICS, performed with a KUKA robot of the Forschungszentrum Juelich. The second part shows probing with a WAM arm at the Institut de Robotica i Informatica Industrial.

Chapter 65 — Domestic Robotics

Erwin Prassler, Mario E. Munich, Paolo Pirjanian and Kazuhiro Kosuge

When the first edition of this book was published domestic robots were spoken of as a dream that was slowly becoming reality. At that time, in 2008, we looked back on more than twenty years of research and development in domestic robotics, especially in cleaning robotics. Although everybody expected cleaning to be the killer app for domestic robotics in the first half of these twenty years nothing big really happened. About ten years before the first edition of this book appeared, all of a sudden things started moving. Several small, but also some larger enterprises announced that they would soon launch domestic cleaning robots. The robotics community was anxiously awaiting these first cleaning robots and so were consumers. The big burst, however, was yet to come. The price tag of those cleaning robots was far beyond what people were willing to pay for a vacuum cleaner. It took another four years until, in 2002, a small and inexpensive device, which was not even called a cleaning robot, brought the first breakthrough: Roomba. Sales of the Roomba quickly passed the first million robots and increased rapidly. While for the first years after Roomba’s release, the big players remained on the sidelines, possibly to revise their own designs and, in particular their business models and price tags, some other small players followed quickly and came out with their own products. We reported about theses devices and their creators in the first edition. Since then the momentum in the field of domestics robotics has steadily increased. Nowadays most big appliance manufacturers have domestic cleaning robots in their portfolio. We are not only seeing more and more domestic cleaning robots and lawn mowers on the market, but we are also seeing new types of domestic robots, window cleaners, plant watering robots, tele-presence robots, domestic surveillance robots, and robotic sports devices. Some of these new types of domestic robots are still prototypes or concept studies. Others have already crossed the threshold to becoming commercial products.

For the second edition of this chapter, we have decided to not only enumerate the devices that have emerged and survived in the past five years, but also to take a look back at how it all began, contrasting this retrospection with the burst of progress in the past five years in domestic cleaning robotics. We will not describe and discuss in detail every single cleaning robot that has seen the light of the day, but select those that are representative for the evolution of the technology as well as the market. We will also reserve some space for new types of mobile domestic robots, which will be the success stories or failures for the next edition of this chapter. Further we will look into nonmobile domestic robots, also called smart appliances, and examine their fate. Last but not least, we will look at the recent developments in the area of intelligent homes that surround and, at times, also control the mobile domestic robots and smart appliances described in the preceding sections.

Test-driving Beam, the telepresence robot

Author  Erwin Prassler

Video ID : 744

Scott Hassan from Suitable Technologies explaining the telepresence robot Beam to Parmy Olson from Forbes Magazine.

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Waalbot: Agile climbing with synthetic fibrillar dry adhesives

Author  Mike Murphy

Video ID : 541

A wall climbing robot developed by Dr. Murphy and Dr. Sitti.