View Chapter

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Quadrupteron robot

Author  Clément Gosselin

Video ID : 52

This video demonstrates a 4-DOF partially decoupled scara-type parallel robot (Quadrupteron). References: 1. P.L. Richard, C. Gosselin, X. Kong: Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator, ASME J. Mech. Des. 129(6), 611-616 (2007); 2. X. Kong, C. Gosselin: Forward displacement analysis of a quadratic 4-DOF 3T1R parallel manipulator: The Quadrupteron, Meccanica 46(1), 147-154 (2011); 3. C. Gosselin: Compact dynamic models for the tripteron and quadrupteron parallel manipulators, J. Syst. Control Eng. 223(I1), 1-11 (2009)

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

JPL dual-arm telerobot system

Author  Antal K. Bejczy, Zoltan Szakaly

Video ID : 298

This video shows a dual-arm, force-reflecting telerobotic system developed by the Jet Propulsion Laboratory for space teleoperation applications of kinematically and dynamically different slave systems. Presented at ICRA 1990.

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

Toto

Author  Maja J. Mataric

Video ID : 35

This is a video of the work done early 1990, showing Toto which introduced the use of distributed representation into behavior-based systems. Reference: M.J. Matarić: Integration of representation into goal-driven behavior-based robots, IEEE Trans. Robot. Autom. 8(3), 304–312 (1992)

Chapter 35 — Multisensor Data Fusion

Hugh Durrant-Whyte and Thomas C. Henderson

Multisensor data fusion is the process of combining observations from a number of different sensors to provide a robust and complete description of an environment or process of interest. Data fusion finds wide application in many areas of robotics such as object recognition, environment mapping, and localization.

This chapter has three parts: methods, architectures, and applications. Most current data fusion methods employ probabilistic descriptions of observations and processes and use Bayes’ rule to combine this information. This chapter surveys the main probabilistic modeling and fusion techniques including grid-based models, Kalman filtering, and sequential Monte Carlo techniques. This chapter also briefly reviews a number of nonprobabilistic data fusion methods. Data fusion systems are often complex combinations of sensor devices, processing, and fusion algorithms. This chapter provides an overview of key principles in data fusion architectures from both a hardware and algorithmic viewpoint. The applications of data fusion are pervasive in robotics and underly the core problem of sensing, estimation, and perception. We highlight two example applications that bring out these features. The first describes a navigation or self-tracking application for an autonomous vehicle. The second describes an application in mapping and environment modeling.

The essential algorithmic tools of data fusion are reasonably well established. However, the development and use of these tools in realistic robotics applications is still developing.

Application of visual odometry for sewer-inspection robots

Author  José Saenz, Christoph Walter, Erik Schulenburg, Norbert Elkmann, Heiko Althoff

Video ID : 638

Exploits a multisensor robot (multiple cameras and range finder) to inspect pipelines.

Chapter 68 — Human Motion Reconstruction

Katsu Yamane and Wataru Takano

This chapter presents a set of techniques for reconstructing and understanding human motions measured using current motion capture technologies. We first review modeling and computation techniques for obtaining motion and force information from human motion data (Sect. 68.2). Here we show that kinematics and dynamics algorithms for articulated rigid bodies can be applied to human motion data processing, with help from models based on knowledge in anatomy and physiology. We then describe methods for analyzing human motions so that robots can segment and categorize different behaviors and use them as the basis for human motion understanding and communication (Sect. 68.3). These methods are based on statistical techniques widely used in linguistics. The two fields share the common goal of converting continuous and noisy signal to discrete symbols, and therefore it is natural to apply similar techniques. Finally, we introduce some application examples of human motion and models ranging from simulated human control to humanoid robot motion synthesis.

Converting human motion to sentences

Author  Katsu Yamane

Video ID : 766

This video shows an example of converting human motion sequences to descriptive sentences.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

A mini, unmanned, aerial system for remote sensing in agriculture

Author  Joao Valente, Julian Colorado, Claudio Rossi, Alex Martinez, Jaime Del Cerro, Antonio Barrientos

Video ID : 307

This video shows a mini-aerial robot employed for aerial sampling in precision agriculture (PA). Issues such as field partitioning, path planning, and robust flight control are addressed, together with experimental results collected during outdoor testing.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Active teaching

Author  Maya Cakmak, Andrea Thomaz

Video ID : 107

Active-teaching scenario where the Simon humanoid robot asks for help during or after teaching, verifying that its understanding of the task is correct. Reference: M. Cakmak, A.L. Thomaz: Designing robot learners that ask good questions, Proc. ACM/IEEE Int. Conf. Human-Robot Interaction (HRI), Boston (2012), pp. 17–24, URL: https://www.youtube.com/user/SimonTheSocialRobot .

Chapter 44 — Networked Robots

Dezhen Song, Ken Goldberg and Nak-Young Chong

As of 2013, almost all robots have access to computer networks that offer extensive computing, memory, and other resources that can dramatically improve performance. The underlying enabling framework is the focus of this chapter: networked robots. Networked robots trace their origin to telerobots or remotely controlled robots. Telerobots are widely used to explore undersea terrains and outer space, to defuse bombs and to clean up hazardous waste. Until 1994, telerobots were accessible only to trained and trusted experts through dedicated communication channels. This chapter will describe relevant network technology, the history of networked robots as it evolves from teleoperation to cloud robotics, properties of networked robots, how to build a networked robot, example systems. Later in the chapter, we focus on the recent progress on cloud robotics, and topics for future research.

Tele-actor

Author  Ken Goldberg, Dezhen Song

Video ID : 83

We describe a networked teleoperation system that enables groups of participants to collaboratively explore real-time remote environments. Participants collaborate using a spatial dynamic voting (SDV) interface which enables them to vote on a sequence of images via a network such as the internet. The SDV interface runs on each client computer and communicates with a central server which collects, displays, and analyzes time sequences of spatial votes. The results are conveyed to the “tele-actor,” a skilled human with cameras and microphones who navigates and performs actions in the remote environment.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Sena wheelchair: Autonomous navigation at University of Malaga (2007)

Author  Jose Luis Blanco

Video ID : 708

This experiment demonstrates how a reactive navigation method successfully enables our robotic wheelchair SENA to navigate reliably in the entrance of our building at the University of Malaga (Spain). The robot navigates autonomously amidst dozens of students while avoiding collisions. The method is based on a space transformation, which simplifies finding collision-free movements in real-time despite the arbitrarily complex shape of the robot and its kinematic restrictions.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Tripteron robot

Author  Clément Gosselin

Video ID : 54

This video demonstrates a 3-DOF decoupled translational parallel robot (Tripteron). References: 1. X. Kong, C.M. Gosselin: Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator, Inte. J. Robot. Res. 21(9), 791-798 (2002); 2. C. Gosselin: Compact dynamic models for the tripteron and quadrupteron parallel manipulators, J. Syst. Control Eng. 223(I1), 1-11 (2009)