View Chapter

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

SpartacUS

Author  François Michaud

Video ID : 417

AAAI 2005 Robot Challenge entry from the Université de Sherbrooke, named Spartacus, using MBA (motivated behavioral architecture) to enable a robot to participate at the conference as a regular attendee. Reference: F. Michaud, C. Côté, D. Létourneau, Y. Brosseau, J.-M. Valin, É. Beaudry, C. Raïevsky, A. Ponchon, P. Moisan, P. Lepage, Y. Morin, F. Gagnon, P. Giguère, M.-A. Roux, S. Caron, P. Frenette, F. Kabanza: Spartacus attending the 2005 AAAI Conference, Auton. Robot. 12(2), 211–222 (2007)

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

The DLR Hand performing several tasks

Author  DLR - Robotics and Mechatronics Center

Video ID : 769

In the video, several experiments and the execution of different tasks by the DLR Hand II are shown.

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

Global Conference on Educational Robotics and International Botball Tournament

Author  KIPR

Video ID : 241

GCER is a STEM-oriented robotics conference, in which the majority of the attendees, paper authors, and presenters are K-12 robotics students. Educator-paper tracks and technology-research tracks also occur. GCER is also the site of the International Botball Tournament, KIPR Open, aerial robots contests, and elementary-school robotics challenges. Some of the recent guest speakers at the conference have included Dr. Maja Mataric (human-robot interactions), Dr. Vijay Kumar (coordinated flying robots), and Dr. Hiroshi Ishiguro (androids). Details from: http://www.kipr.org/gcer .

Chapter 10 — Redundant Robots

Stefano Chiaverini, Giuseppe Oriolo and Anthony A. Maciejewski

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different firstorder methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e.g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e.g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

Human robot arm with redundancy resolution

Author  PRISMA Lab

Video ID : 816

In this video, the mapping of human-arm motion to an anthropomorphic robot arm (7-DOF Kuka LWR ) using Xsens MVN is demonstrated. The desired end-effector trajectories of the robot are reconstructed from the human hand, forearm and upper arm trajectories in the Cartesian space obtained from the motion tracking system by means of human-arm biomechanical models and sensor-fusion algorithms embedded in the Xsens technology. The desired pose of the robot is reconstructed taking into account the differences between the robot and human-arm kinematics and is obtained by suitably scaling to the human-arm link dimensions.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

An octopus-bioinspired solution to movement and manipulation for soft robots

Author  Marcello Calisti, Michelle Giorelli, Guy Levy, Barbara Mazzolai, Binyamin Hochner, Cecilia Laschi, Paolo Dario

Video ID : 411

A totally soft robotic arm freely moving in water was inspired by the form and morphology of the octopus.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Modsnake sidewinding

Author  Howie Choset

Video ID : 174

CMU Modsnake sidewinding across rocky terrain

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

HandSOME exoskeleton

Author  Peter Lum

Video ID : 568

A stroke patient's ability to pick up objects is immediately improved after donning the HandSOME orthosis. Springs provide a customized assistance profile that increases the active range of motion with only minimal decreases in grip force.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

A scene of deictic interaction

Author  Takayuki Kanda

Video ID : 807

This video illustrates the "deictic interaction" in which the robot and a user interact using pointing gestures and verbal-reference terms. The robot has a capability to understand the user's deictic interaction recognizing both the pointing gesture and the reference term. In addition, there is a 'facilitation' mechanism (e.g., the robot engages in real-time joint attention), which makes the interaction smooth and natural.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

An autonomous cucumber harvester

Author  Elder J. van Henten, Jochen Hemming, Bart A.J. van Tuijl, J.G. Kornet, Jan Meuleman, Jan Bontsema, Erik A. van Os

Video ID : 308

The video demonstrates an autonomous cucumber harvester developed at Wageningen University and Research Centre, Wageningen, The Netherlands. The machine consists of a mobile platform which runs on rails, which are commonly used in greenhouses in The Netherlands for the purpose of internal transport, but they are also used as a hot- water heating system for the greenhouse. Harvesting requires functional steps such as the detection and localization of the fruit and assessment of its ripeness. In the case of the cucumber harvester, the different reflection properties in the near infrared spectrum are exploited to detect green cucumbers in the green environment. Whether the cucumber was ready for harvest was identified based on an estimation of its weight. Since cucumbers consist 95% of water, the weight estimation was achieved by estimating the volume of each fruit. Stereo-vision principles were then used to locate the fruits to be harvested in the 3-D environment. For that purpose, the camera was shifted 50 mm on a linear slide and two images of the same scene were taken and processed. A Mitsubishi RV-E2 manipulator was used to steer the gripper-cutter mechanism to the fruit and transport the harvested fruit back to a storage crate. Collision-free motion planning based on the A* algorithm was used to steer the manipulator during the harvesting operation. The cutter consisted of a parallel gripper that grabbed the peduncle of the fruit, i.e., the stem segment that connects the fruit to the main stem of the plant. Then the action of a suction cup immobilized the fruit in the gripper. A special thermal cutting device was used to separate the fruit from the plant. The high temperature of the cutting device also prevented the potential transport of viruses from one plant to the other during the harvesting process. For each successful cucumber harvested, this machine needed 65.2 s on average. The average success rate was 74.4%. It was found to be a great advantage that the system was able to perform several harvest attempts on a single cucumber from different harvest positions of the robot. This improved the success rate considerably. Since not all attempts were successful, a cycle time of 124 s per harvested cucumber was measured under practical circumstances.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

3-DOF high-speed 3-RPS parallel robot

Author  Tian Huang

Video ID : 43

This video demonstrates a 3-DOF high-speed 3-RPS parallel robot (with A3 head).