This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.
Bayesian Embedded Perception in Inria/Toyota instrumented platform
Author Christian Laugier, E-Motion Team
Video ID : 566
This video illustrates the concept of “Embedded Bayesian Perception”, which has been developed by Inria and implemented on the Inria/Toyota experimental Lexus vehicle. The objective is to improve the robustness of the on-board perception system of the vehicle, by appropriately fusing the data provided by several heterogeneous sensors. The system has been developed as a key component of an electronic co-pilot, designed for the purpose of detecting dangerous driving situations a few seconds ahead. The approach relies on the concept of the “Bayesian Occupancy Filter” developed by the Inria E-Motion Team.
More technical details can be found in [62.25].