View Chapter

Chapter 28 — Force and Tactile Sensing

Mark R. Cutkosky and William Provancher

This chapter provides an overview of force and tactile sensing, with the primary emphasis placed on tactile sensing. We begin by presenting some basic considerations in choosing a tactile sensor and then review a wide variety of sensor types, including proximity, kinematic, force, dynamic, contact, skin deflection, thermal, and pressure sensors. We also review various transduction methods, appropriate for each general sensor type. We consider the information that these various types of sensors provide in terms of whether they are most useful for manipulation, surface exploration or being responsive to contacts from external agents.

Concerning the interpretation of tactile information, we describe the general problems and present two short illustrative examples. The first involves intrinsic tactile sensing, i. e., estimating contact locations and forces from force sensors. The second involves contact pressure sensing, i. e., estimating surface normal and shear stress distributions from an array of sensors in an elastic skin. We conclude with a brief discussion of the challenges that remain to be solved in packaging and manufacturing damage-tolerant tactile sensors.

Capacitive tactile sensing

Author  Mark Cutkosky

Video ID : 14

Video demonstrating the capacitive tactile sensing suite on the SRI-Meka-Stanford four-fingered hand built for the DARPA ARM-H Mobile Manipulation program.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Avian-inspired grasping for quadrotor micro UAVs

Author  Justin Thomas, Joe Polin, Koushil Sreenath, Vijay Kumar

Video ID : 654

Drawing inspiration from aerial hunting by birds of prey, we design and equip a quadrotor MAV with an actuated appendage enabling grasping and object retrieval at high speeds. We develop a nonlinear dynamic model of the system, demonstrate that the system is differentially flat, plan dynamic trajectories using the flatness property, and present experimental results with pick-up velocities at 2m/s (six body lengths/s) and 3m/s (nine body lengths/s).

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Gait Trainer GT 1

Author  Reha Stim

Video ID : 504

The Gait Trainer GT1 was one of the first robotic gait trainers and now is widely used in clinics.

Chapter 25 — Underwater Robots

Hyun-Taek Choi and Junku Yuh

Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.

Preliminary results of sonar-based SLAM using landmarks

Author  Hyun-Taek Choi

Video ID : 794

This video records preliminary experimental results of a sonar-based SLAM algorithm developed by KRISO (Korea Research Institute of Ships and Ocean Engineering). A position obtained by the proposed probability-based landmark-recognition method and landmarks especially designed for sonar is used to correct the position estimated by IMU/DVL navigation using EKF (extended Kalman filter).

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

CompAct™ robotics technology

Author  Istituto Italiano di Tecnologia (IIT)

Video ID : 471

Brief video showing CompAct™ actuation units and arm, demonstrating the effects of its core variable damping (VPDA) technology. Key features of these units include: 1. intrinsic safety (lightweight and elastic transmission) meant for safe human-robot collaboration; 2. precision, thanks to the variable damping transmission, protected by international patents; 3. ease of use (no need for experts to program it, easy to reprogram, flexible to use).

Chapter 62 — Intelligent Vehicles

Alberto Broggi, Alex Zelinsky, Ümit Özgüner and Christian Laugier

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

Bayesian Embedded Perception in Inria/Toyota instrumented platform

Author  Christian Laugier, E-Motion Team

Video ID : 566

This video illustrates the concept of “Embedded Bayesian Perception”, which has been developed by Inria and implemented on the Inria/Toyota experimental Lexus vehicle. The objective is to improve the robustness of the on-board perception system of the vehicle, by appropriately fusing the data provided by several heterogeneous sensors. The system has been developed as a key component of an electronic co-pilot, designed for the purpose of detecting dangerous driving situations a few seconds ahead. The approach relies on the concept of the “Bayesian Occupancy Filter” developed by the Inria E-Motion Team. More technical details can be found in [62.25].

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

COMRADE: Compliant motion research and development environment

Author  Joris De Schutter, Herman Bruyninckx, Hendrik Van Brussel et al.

Video ID : 691

The video collects works on force control developed in the 1970s-1980s and 1990s at the Department of Mechanical Engineering of the Katholieke Universiteit Leuven, Belgium. The tasks were programmed and simulated using the task-frame-based software package COMRADE (compliant motion research and development environment). The video was recorded in the mid-1990s. The main references for the video are: 1. H. Van Brussel, J. Simons: The adaptable compliance concept and its use for automatic assembly by active force feedback accommodations, Proc. 9th Int. Symposium Indust. Robot., Washington (1979), pp.167-181 2. J. Simons, H. Van Brussel, J. De Schutter, J. Verhaert: A self-learning automaton with variable resolution for high precision assembly by industrial robots, IEEE Trans. Autom. Control 27(5), 1109-1113 (1982) 3. J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robot. Res. 7(4), 18-33 (1988) 3.J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robot. Res. 7(4), 3-17 (1988) 4. W. Witvrouw, P. Van de Poel, H. Bruyninckx, J. De Schutter: ROSI: A task specification and simulation tool for force-sensor-based robot control, Proc. 24th Int. Symp. Indust. Robot., Tokyo (1993), pp. 385-392 5. W. Witvrouw, P. Van de Poel, J. De Schutter: COMRADE: Compliant motion research and development environment, Proc. 3rd IFAC/IFIP Workshop on Algorithms and Architecture for Real-Time Control. Ostend (1995), pp. 81-87 6. H. Bruyninckx, S. Dutre, J. De Schutter: Peg-on-hole, a model-based solution to peg and hole alignment, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Nagoya (1995), pp. 1919-1924 7. M. Nuttin, H. Van Brussel: Learning the peg-into-hole assembly operation with a connectionist reinforcement technique, Comput. Ind. 33(1), 101-109 (1997)

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Security: Facial recognition

Author  Ali Mollahosseini, Mohammad Mahoor

Video ID : 553

Video of face tracking and facial-landmark-point extraction of Ali's face for a security robot.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Calibration and accuracy validation of a FANUC LR Mate 200iC industrial robot

Author  Ilian Bonev

Video ID : 430

This video shows excerpts from the process of calibrating a FANUC LR Mate 200iC industrial robot using two different methods. In the first method, the position of one of three points on the robot end-effector is measured using a FARO laser tracker in 50 specially selected robot configurations (not shown in the video). Then, the robot parameters are identified. Next, the position of one of the three points on the robot's end-effector is measured using the laser tracker in 10,000 completely arbitrary robot configurations. The mean positioning error after calibration was found to be 0.156 mm, the standard deviation (std) 0.067 mm, the mean+3*std 0.356 mm, and the maximum 0.490 mm. In the second method, the complete pose (position and orientation) of the robot end-effector is measured in about 60 robot configurations using an innovative method based on Renishaw's telescoping ballbar. Then, the robot parameters are identified. Next, the position of one of the three points on the robot's end-effector is measured using the laser tracker in 10,000 completely arbitrary robot configurations. The mean position error after calibration was found to be 0.479 mm, the standard deviation (std) 0.214 mm, and the maximum 1.039 mm. However, if we limit the zone for validations, the accuracy of the robot is much better. The second calibration method is less efficient but relies on a piece of equipment that costs only $12,000 (only one tenth the cost of a laser tracker).

Chapter 71 — Cognitive Human-Robot Interaction

Bilge Mutlu, Nicholas Roy and Selma Šabanović

A key research challenge in robotics is to design robotic systems with the cognitive capabilities necessary to support human–robot interaction. These systems will need to have appropriate representations of the world; the task at hand; the capabilities, expectations, and actions of their human counterparts; and how their own actions might affect the world, their task, and their human partners. Cognitive human–robot interaction is a research area that considers human(s), robot(s), and their joint actions as a cognitive system and seeks to create models, algorithms, and design guidelines to enable the design of such systems. Core research activities in this area include the development of representations and actions that allow robots to participate in joint activities with people; a deeper understanding of human expectations and cognitive responses to robot actions; and, models of joint activity for human–robot interaction. This chapter surveys these research activities by drawing on research questions and advances from a wide range of fields including computer science, cognitive science, linguistics, and robotics.

Designing robot learners that ask good questions

Author  Maya Cakmak, Andrea Thomaz

Video ID : 237

Programming new skills on a robot should take minimal time and effort. One approach to achieve this goal is to allow the robot to ask questions. This idea, called active learning, has recently caught a lot of attention in the robotics community. However, it has not been explored from a human-robot interaction perspective. We identify three types of questions (label, demonstration, and feature queries) and discuss how a robot can use these while learning new skills. Then, we present an experiment on human question-asking which characterizes the extent to which humans use these question types. Finally, we evaluate the three types of question within a human-robot teaching interaction. We investigate the ease with which different types of questions are answered and whether or not there is a general preference of one type of question over another. Based on our findings from both experiments, we provide guidelines for designing question-asking behaviors for a robot learner.