View Chapter

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Manus assistive robot

Author  Christopher Hamilton

Video ID : 500

The MIT-Manus assistive robot can be mounted on a wheelchair or a table to enable a user with paralysis to manipulate objects.

Chapter 11 — Robots with Flexible Elements

Alessandro De Luca and Wayne J. Book

Design issues, dynamic modeling, trajectory planning, and feedback control problems are presented for robot manipulators having components with mechanical flexibility, either concentrated at the joints or distributed along the links. The chapter is divided accordingly into two main parts. Similarities or differences between the two types of flexibility are pointed out wherever appropriate.

For robots with flexible joints, the dynamic model is derived in detail by following a Lagrangian approach and possible simplified versions are discussed. The problem of computing the nominal torques that produce a desired robot motion is then solved. Regulation and trajectory tracking tasks are addressed by means of linear and nonlinear feedback control designs.

For robots with flexible links, relevant factors that lead to the consideration of distributed flexibility are analyzed. Dynamic models are presented, based on the treatment of flexibility through lumped elements, transfer matrices, or assumed modes. Several specific issues are then highlighted, including the selection of sensors, the model order used for control design, and the generation of effective commands that reduce or eliminate residual vibrations in rest-to-rest maneuvers. Feedback control alternatives are finally discussed.

In each of the two parts of this chapter, a section is devoted to the illustration of the original references and to further readings on the subject.

Control experiments for a flexible-joint robot arm

Author  Mark Spong

Video ID : 135

This 1989 video is about an experimental single-link arm with an elastic joint moving under gravity, which was developed at the Coordinated Science Lab of the University of Illinois at Urbana. The video illustrates some of the control techniques that are mentioned in the first part of Chap. 11: e.g., computed torque using the rigid model (unstable), feedback linearizing control including elasticity (perfect design), and corrective control based on singular perturbation analysis (and its adaptive version). Reference: F. Ghorbel, J.Y. Hung, M.W. Spong: Adaptive control of flexible joint robots, IEEE Control Syst. Mag. 9(7), 9-13 (1989) doi: 10.1109/37.41450

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Integration of force strategies and natural-admittance control

Author  Brian B. Mathewson, Wyatt S. Newman

Video ID : 685

When mating parts are brought together, small misalignments must be accommodated by responding to contact forces. Using force feedback, a robot may sense contact forces during assembly and invoke a response to guide the parts into their correct mating positions. The proposed approach integrates force-guided strategies into Hogan's impedance control. Stability of both geometric convergence and of contact dynamics are achieved. Geometric convergence is accomplished more reliably than through the use of impedance control alone, and such a convergence is achieved more rapidly than through the use of force-guided strategies alone. This work was published in the ICRA 1995 video proceedings.

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobotics Demonstrator D4 welding robot assistant

Author  Martin Haegele, Thilo Zimmermann, Björn Kahl

Video ID : 383

SMErobotics: Europe's leading robot manufacturers and research institutes have teamed up with the European Robotics Initiative for Strengthening the Competitiveness of SMEs in Manufacturing - to make the vision of cognitive robotics a reality in a key segment of EU manufacturing. Funded by the European Union 7th Framework Programme under GA number 287787. Project runtime: 01.01.2012 - 30.06.2016 For a general introduction, please also watch the general SMErobotics project video (ID 260). About this video: Chapter 1: Introduction (0:00); Chapter 2: Job arrives (0:43); Chapter 3: Programming of weld seams (selection of seams) (01:08); Chapter 4: Scanning of seams (01:45); Chapter 5: Error recovery (02:13); Chapter 6: Welding I (02:33); Chapter 7: Welding II (02:57); Chapter 8: Seam inspection (03:32); Chapter 9: Statement (in German with English subtitles) (04:06); Chapter 10: Outro (04:32); Chapter 11: SMErobotics statement (04:55). For details, please visit: http://www.smerobotics.org/project/video-of-demonstrator-d4.html

Chapter 65 — Domestic Robotics

Erwin Prassler, Mario E. Munich, Paolo Pirjanian and Kazuhiro Kosuge

When the first edition of this book was published domestic robots were spoken of as a dream that was slowly becoming reality. At that time, in 2008, we looked back on more than twenty years of research and development in domestic robotics, especially in cleaning robotics. Although everybody expected cleaning to be the killer app for domestic robotics in the first half of these twenty years nothing big really happened. About ten years before the first edition of this book appeared, all of a sudden things started moving. Several small, but also some larger enterprises announced that they would soon launch domestic cleaning robots. The robotics community was anxiously awaiting these first cleaning robots and so were consumers. The big burst, however, was yet to come. The price tag of those cleaning robots was far beyond what people were willing to pay for a vacuum cleaner. It took another four years until, in 2002, a small and inexpensive device, which was not even called a cleaning robot, brought the first breakthrough: Roomba. Sales of the Roomba quickly passed the first million robots and increased rapidly. While for the first years after Roomba’s release, the big players remained on the sidelines, possibly to revise their own designs and, in particular their business models and price tags, some other small players followed quickly and came out with their own products. We reported about theses devices and their creators in the first edition. Since then the momentum in the field of domestics robotics has steadily increased. Nowadays most big appliance manufacturers have domestic cleaning robots in their portfolio. We are not only seeing more and more domestic cleaning robots and lawn mowers on the market, but we are also seeing new types of domestic robots, window cleaners, plant watering robots, tele-presence robots, domestic surveillance robots, and robotic sports devices. Some of these new types of domestic robots are still prototypes or concept studies. Others have already crossed the threshold to becoming commercial products.

For the second edition of this chapter, we have decided to not only enumerate the devices that have emerged and survived in the past five years, but also to take a look back at how it all began, contrasting this retrospection with the burst of progress in the past five years in domestic cleaning robotics. We will not describe and discuss in detail every single cleaning robot that has seen the light of the day, but select those that are representative for the evolution of the technology as well as the market. We will also reserve some space for new types of mobile domestic robots, which will be the success stories or failures for the next edition of this chapter. Further we will look into nonmobile domestic robots, also called smart appliances, and examine their fate. Last but not least, we will look at the recent developments in the area of intelligent homes that surround and, at times, also control the mobile domestic robots and smart appliances described in the preceding sections.

WINBOT W710 versus HOBOT 168 (auf Deutsch)

Author  Erwin Prassler

Video ID : 735

Video (in German) compares performance of two robotic window cleaners, namely the Winbot W710 and Hobot 168.

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

Underwater vehicle Nereus

Author  Woods Hole Oceanographic Institution

Video ID : 88

Nereus is the first vehicle to enable routine scientific investigation of the world's deepest ocean depths. Recently, Nereus successfully reached the deepest part of the world's ocean - the Challenger Deep in the Mariana Trench in the western Pacific Ocean.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Learning from failure I

Author  Aude Billard

Video ID : 476

This video illustrates how learning from demonstration can be bootstrapped using failed demonstrations only (in place of traditional approaches that use successful demonstrations). The algorithm is described in detail in two publications: 1)D.-H. Grollman, A. Billard: Donut as I do: Learning from failed demonstrations, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Shanghai (2011) Best Paper Award (Cognitive Robotics); 2) D.-H. Grollman, A. Billard: Robot learning from failed demonstrations, Int. J. Social Robot. 4(4), 331-342 (2012).

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Extracting kinematic background knowledge from interactions using task-sensitive, relational learning

Author  Sebastian Hofer, Tobias Lang, Oliver Brock

Video ID : 671

To successfully manipulate novel objects, robots must first acquire information about the objects' kinematic structure. We present a method to learn relational, kinematic, background knowledge from exploratory interactions with the world. As the robot gathers experience, this background knowledge enables the acquisition of kinematic world models with increasing efficiency. Learning such background knowledge, however, proves difficult, especially in complex, feature-rich domains. We present a novel, task-sensitive, relational-rule learner and demonstrate that it is able to learn accurate kinematic background knowledge in domains where other approaches fail. The resulting background knowledge is more compact and generalizes better than that obtained with existing approaches.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Field experiments with the OctArm continuum manipulator

Author  Ian Walker

Video ID : 157

Video overview of the OctArm continuum manipulator's applications and features.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Autonomous robot skill acquisition

Author  Scott Kuindersma, George Konidaris

Video ID : 669

This video demonstrates the autonomous-skill acquisition of a robot acting in a constrained environment called the "Red Room". The environment consists of buttons, levers, and switches, all located at points of interest designated by ARTags. The robot can navigate to these locations and perform primitive manipulation actions, some of which affect the physical state of the maze (e.g., by opening or closing a door).