View Chapter

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Stenting deployment system

Author  Nabil Simaan

Video ID : 248

A 3-DOF continuum robot for intraocular dexterity and stent placement. The video shows a stent being deployed in a choroallantoic chick membrane which represents the vasculature of the retina [1, 2]. Note that [1] reports an algorithm for assisted telemanipulation and force sensing at the tip of a guide wire using a rapid interpolation map by elliptic integrals. References: [1] W. Wei, N. Simaan: Modeling, force sensing, and control of flexible cannulas for microstent delivery, J. Dyn. Syst. Meas. Control 134(4), 041004 (2012); [2] W. Wei, C. Popplewell, H. Fine, S. Chang, N. Simaan: Enabling technology for micro-vascular stenting in ophthalmic surgery, ASME J. Med. Dev. 4(2), 014503-01 - 014503-06 (2010)

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

DLR Hand Arm System throwing a ball and Justin catching it

Author  Alin Albu-Schäffer, Thomas Bahls, Berthold Bäuml, Maxime Chalon, Markus Grebenstein, Oliver Eiberger, Werner Friedl, Hannes Höppner, Dominic Lakatos, Nico Mansfeld, Florian Petit, Jens Reinecke, Roman Weitschat, Sebastian Wolf, Tilo Wüsthoff

Video ID : 547

The DLR Hand Arm System throws a ball and Justin catches it. There is no data connection between the two systems. Justin catches the ball by visual observation.

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Antwerp biomimetic sonar system tracking two balls

Author  Herbert Peremans

Video ID : 317

The Antwerp biomimetic bat-head sonar system consists of a single emitter and two receivers. The receivers are constructed by inserting a small omnidirectional microphone in the ear canal of a plastic replica of the outer ear of the bat Phyllostomus discolor. Using the head-related transfer (HRTF) cues, the system is able to localize multiple reflectors in three dimensions based on a single emission. This video demonstrates the tracking of two balls serving as targets.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Large-scale SLAM using the Atlas framework

Author  Michael Bosse

Video ID : 440

This video shows the operation of the Atlas framework for real-time, large-scale mapping using the MIT Killian Court data set. Atlas employed graphs of coordinate frames. Each vertex in the graph represents a local coordinate frame, and each edge represents the transformation between adjacent local coordinate frames. In each local coordinate frame, extended Kalman filter SLAM (Chap. 46.3.1, Springer Handbook of Robotics, 2nd edn 2016) is performed to make a map of the local environment and to estimate the current robot pose, along with the uncertainties of each. Each map's uncertainties were modelled with respect to its own local frame. Probabilities of entities in relation to arbitrary map-frames were generated by following a path formed by the edges between adjacent map-frames, using Dijkstra's shortest path algorithm. Loop-closing was achieved via an efficient map matching algorithm. Reference: M. Bosse, P. M. Newman, J. Leonard, S. Teller: Simultaneous localization and map building in large-scale cyclic environments using the Atlas framework, Int. J. Robot. Res. 23(12), 1113-1139 (2004).

Chapter 57 — Robotics in Construction

Kamel S. Saidi, Thomas Bock and Christos Georgoulas

This chapter introduces various construction automation concepts that have been developed over the past few decades and presents examples of construction robots that are in current use (as of 2006) and/or in various stages of research and development. Section 57.1 presents an overview of the construction industry, which includes descriptions of the industry, the types of construction, and the typical construction project. The industry overview also discusses the concept of automation versus robotics in construction and breaks down the concept of robotics in construction into several levels of autonomy as well as other categories. Section 57.2 discusses some of the offsite applications of robotics in construction (such as for prefabrication), while Sect. 57.3 discusses the use of robots that perform a single task at the construction site. Section 57.4 introduces the concept of an integrated robotized construction site in which multiple robots/machines collaborate to build an entire structure. Section 57.5 discusses unsolved technical problems in construction robotics, which include interoperability, connection systems, tolerances, and power and communications. Finally, Sect. 57.6 discusses future directions in construction robotics and Sect. 57.7 gives some conclusions and suggests resources for further reading.

Obayashi ACBS (Automatic Constructions Building System)

Author  Thomas Bock

Video ID : 272

In the Obayashi ACBS (Automatic Constructions Building System) (Figure 57.29), once a story has been finished, the whole support structure, which rests on four columns, is pushed upwards by hydraulic presses to the next story over a 1.5 h period. Fully extended, the support structure is 25 m high; retracted it measures 4.5 m. Once everything has been moved up, work starts on the next story. By constructing the topmost story of the high-rise building as the roof at the beginning of the building process, the site is closed off in all directions, considerably reducing the effect of the weather and any damage it might cause.

Chapter 67 — Humanoids

Paul Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto, Kazuhito Yokoi and Eiichi Yoshida

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration ofmany of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

Footstep planning modeled as a whole-body, inverse-kinematic problem (experiment)

Author  Eiichi Yoshida

Video ID : 600

The whole-body, inverse-kinematic motion including locomotion in video 596 has been experimentally validated by using HPR-2 humanoid robot. The challenging motion-planning problem of picking up an object almost between its feet has been successfully solved with the proposed framework.

Chapter 80 — Roboethics: Social and Ethical Implications

Gianmarco Veruggio, Fiorella Operto and George Bekey

This chapter outlines the main developments of roboethics 9 years after a worldwide debate on the subject – that is, the applied ethics about ethical, legal, and societal aspects of robotics – opened up. Today, roboethics not only counts several thousands of voices on the Web, but is the issue of important literature relating to almost all robotics applications, and of hundreds of rich projects, workshops, and conferences. This increasing interest and sometimes even fierce debate expresses the perception and need of scientists, manufacturers, and users of professional guidelines and ethical indications about robotics in society.

Some of the issues presented in the chapter are well known to engineers, and less known or unknown to scholars of humanities, and vice versa. However, because the subject is transversal to many disciplines, complex, articulated, and often misrepresented, some of the fundamental concepts relating to ethics in science and technology are recalled and clarified.

A detailed taxonomy of sensitive areas is presented. It is based on a study of several years and referred to by scientists and scholars, the result of which is the Euron Roboethics Roadmap. This taxonomy identifies themost evident/urgent/sensitive ethical problems in the main applicative fields of robotics, leaving more in-depth research to further studies.

Roboethics: Military robotics

Author  Fiorella Operto

Video ID : 775

Ethical, legal and societal issues in military robotics. The so-called field of military robotics comprises all the devices resulting from the development of the traditional systems by robotics technology: Integrated defense systems; and A.I. systems for intelligence and surveillance controlling weapons and aircraft capabilities. Unmanned ground vehicles (UGVs), or autonomous tanks: Armored vehicles carrying weapons and/or tactical payloads, intelligent bombs and missiles. UAVs (unmanned aerial vehicles): also referred to as autonomous flying vehicles (AFVs) or drones, unmanned spy planes and remotely piloted bombers. ASV (autonomous surface vessels) and patrol boats. AUVs (autonomous underwater vehicles): Intelligent torpedoes and autonomous submarines. In this field, the main problems could arise from: inadequate management of the unstructured complexity of a hostile scenario; the unpredictability of machine behavior; the increased risk of starting a video-game-like war, due to the decreased perception of its deadly effects; unpredictable side-effects on civilian populations; human-in-control hierarchy and robot’s transparency; psychological issues of humans in robotized environments (mixed teams); accountability and responsibility gap; the assignment of liability for misbehaviors or crimes. Collateral damages: Despite the increasing success of this technology, military hierarchies feel concerned about the potential dangers. Drones can accidentally fall and possibly damage humans and objects. Daily news report about unintended injury or death of innocent non-combatants (usually known as “collateral damage”) from war theaters. Potential friendly-fire casualties in crowded battlefield or due to enemy’s tracking/hijacking.

Chapter 10 — Redundant Robots

Stefano Chiaverini, Giuseppe Oriolo and Anthony A. Maciejewski

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different firstorder methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e.g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e.g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

Visual servoing control of Baxter robot arms with obstacle avoidance using kinematic edundancy

Author  Chenguang Yang

Video ID : 819

Visual servoing control rby an obstacle avoidance strategy using kinematics redundancy has been developed and tested on a Baxter robot. A Point Grey Bumblebee2 stereo camera is used to obtain the 3-D point cloud of a target object. The object tracking task allocation between two arms has been developed by identifying workspaces of the dual arms and tracing the object location in a convex hull of the workspace. By employment of a simulated artificial robot as a parallel system as well as a task-switching weight factor, the robot is actually able to restore back to the natural pose smoothly in the absence of the obstacle. Two sets of experiments were carried out to demonstrate the effectiveness of the developed servoing control method.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Combined mobility and manipulation - Operational space control of free-flying space robots

Author  Jeff Russakow, Stephen Rock

Video ID : 787

An environmental space is simulated in two dimensions using an air-bearing over a flat surface. The operational space-control framework enables the dynamically decoupled motion and force control of the object.

Task-consistent, obstacle avoidance for mobile manipulation

Author  Oliver Brock, Oussama Khatib, Sriram Viji

Video ID : 784

This robot can avoid moving obstacles with real-time path modification by using an elastic-strip framework. However, the real-time path modification can interfere with task execution. The proposed task-consistent, elastic planning method can ensure the task execution while achieving obstacle avoidance.