View Chapter

Chapter 7 — Motion Planning

Lydia E. Kavraki and Steven M. LaValle

This chapter first provides a formulation of the geometric path planning problem in Sect. 7.2 and then introduces sampling-based planning in Sect. 7.3. Sampling-based planners are general techniques applicable to a wide set of problems and have been successful in dealing with hard planning instances. For specific, often simpler, planning instances, alternative approaches exist and are presented in Sect. 7.4. These approaches provide theoretical guarantees and for simple planning instances they outperform samplingbased planners. Section 7.5 considers problems that involve differential constraints, while Sect. 7.6 overviews several other extensions of the basic problem formulation and proposed solutions. Finally, Sect. 7.8 addresses some important andmore advanced topics related to motion planning.

Simulation of a large crowd

Author  Dinesh Manocha

Video ID : 21

Motion-planning methods can be used to simulate a large crowd which is a system with a very high degree of freedom. This video illustrates an approach that uses an optimization method to compute a biomechanically energy-efficient, collision-free trajectory for each agent. Many phenomena arise such as lane formation.

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

Multi-vehicle bathymetry mission

Author  Laboratario de Sistemas e Tecnologias Subaquaticas - Porto University / The NOPTILUS project

Video ID : 323

Two LAUV vehicles perform a bathymetry mission inside Porto Harbor. This video shows the deployment, execution, and data-revision phases of the mission. NOPTILUS is funded by the European Community's Seventh Framework Programme ICT-FP.

Chapter 15 — Robot Learning

Jan Peters, Daniel D. Lee, Jens Kober, Duy Nguyen-Tuong, J. Andrew Bagnell and Stefan Schaal

Machine learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors; conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in robot learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this chapter, we attempt to strengthen the links between the two research communities by providing a survey of work in robot learning for learning control and behavior generation in robots. We highlight both key challenges in robot learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our chapter lies on model learning for control and robot reinforcement learning. We demonstrate how machine learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

Inverted helicopter hovering

Author  Pieter Abbeel

Video ID : 352

An example of simulation-based optimization using a learned forward model. This brief video shows a successful application of reinforcement learning to the design of a controller for sustained inverted flight of an autonomous helicopter. The authors began by learning a stochastic, nonlinear forward model of the helicopter’s dynamics. Then, a reinforcement learning algorithm was applied to automatically learn a controller for autonomous inverted hovering. The video illustrates Section 15.2.5 -- Applications of Model Learning, Springer Handbook of Robotics, 2nd ed (2016); Reference: A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, E. Liang: Autonomous inverted helicopter flight via reinforcement learning, IX Int. Symp. Exp. Robot. 2004, Springer Tract. Adv. Robot. 21, 363-372 (2006)

Chapter 71 — Cognitive Human-Robot Interaction

Bilge Mutlu, Nicholas Roy and Selma Šabanović

A key research challenge in robotics is to design robotic systems with the cognitive capabilities necessary to support human–robot interaction. These systems will need to have appropriate representations of the world; the task at hand; the capabilities, expectations, and actions of their human counterparts; and how their own actions might affect the world, their task, and their human partners. Cognitive human–robot interaction is a research area that considers human(s), robot(s), and their joint actions as a cognitive system and seeks to create models, algorithms, and design guidelines to enable the design of such systems. Core research activities in this area include the development of representations and actions that allow robots to participate in joint activities with people; a deeper understanding of human expectations and cognitive responses to robot actions; and, models of joint activity for human–robot interaction. This chapter surveys these research activities by drawing on research questions and advances from a wide range of fields including computer science, cognitive science, linguistics, and robotics.

Robotic secrets revealed, Episode 2: The trouble begins

Author  Greg Trafton

Video ID : 130

This video demonstrates research on robot perception (including object recognition and multimodal person identification) and embodied cognition (including theory of mind or the ability to reason about what others believe). The video features two people interacting with two robots.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Dynamic robot manipulation

Author  Boston Dynamics

Video ID : 664

BigDog handles heavy objects. The goal is to use the strength of the legs and torso to help power motions of the arm. This sort of dynamic, whole-body approach to manipulation is used routinely by human athletes and will enhance the performance of advanced robots.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

MonoSLAM: Real-time single camera SLAM

Author  Andrew Davison

Video ID : 453

This video describes MonoSLAM, an influential early real-time, single-camera, visual SLAM system, described in Chap. 46.4, Springer Handbook of Robotics, 2nd edn (2016). Reference: A.J. Davison, I. Reid, N. Molton, O. Stasse: MonoSLAM: Real-time single camera SLAM, IEEE Trans. Pattern Anal. Mach. Intel. 29(6), 1052-1067 (2007).

Hierarchical optimization for pose graphs on manifolds

Author  Giorgio Grisetti

Video ID : 445

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), using the HOGMAN algorithm. Reference: G. Grisetti, R. Kuemmerle, C. Stachniss, U. Frese, C. Hertzberg: Hierarchical optimization on manifolds for online 2-D and 3-D mapping, IEEE Int. Conf. Robot. Autom. (ICRA), Anchorage (2010), pp. 273-278; doi: 10.1109/ROBOT.2010.5509407.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Meshworm

Author  Sangok Seok, Cagdas Onal, Kyu-Jin Cho, Robert Wood, Daniela Rus, Sangbae Kim

Video ID : 288

Researchers built a soft-bodied robot worm that wriggles using artificial muscles and can withstand being beaten with a hammer.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Mobile robot helper - Mr. Helper

Author   Kazuhiro Kosuge, Manabu Sato, Norihide Kazamura

Video ID : 606

In this video, a mobile robot helper referred to as Mr. Helper is proposed. Mr. Helper consists of two 7-DOF manipulators and an omni-directional mobile base. The omnidirectional mobile base is the VUTON mechanism. In this system, a human and Mr. Helper communicate with each other by intentional force. That is, a human manipulates an object by applying intentional force/torque to the object. We design an impedance controller for each manipulator, so that the object manipulated by both arms has a specified impedance around a specified compliance center. Refrence: ICRA 2000 Video Abstracts.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Sensor-based trajectory deformation and docking for nonholonomic mobile robots

Author  Florent Lamiraux

Video ID : 80

This video demonstrates motion planning and reactive obstacle avoidance for nonholonomic robots. A mobile robot with a trailer is asked to park into a U-shaped obstacle. Motion planning is performed by a visibility-based PRM algorithm using a flatness-based steering method built on convex combinations of canonical curves. The planned trajectory is then followed by the robot while detecting obstacles using a laser scanner. The current trajectory is locally deformed in order to avoid obstacles and to end at the detected U-shaped obstacle.