View Chapter

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

MARS (multiple autonomous robots)

Author  Camillo J. Taylor, Vijay Kumar

Video ID : 204

The goal of the research is to develop a framework and the support tools for the deployment of multiple autonomous robots in an unstructured and unknown environment, with applications to reconnaissance, surveillance, target acquisition, and the removal of explosive ordnance. The current state of the art in control software enables supervised autonomy, a paradigm in which a human user can command and control one robot using teleoperation and close supervisory control. The objective here is to develop the software framework and tools for a new generation of autonomous robots.

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Tracking people for security

Author  Nikos Papanikolopoulos

Video ID : 683

Tracking of people in crowded scenes is challenging because people occlude each other as they walk around. The latest revision of the University of Minnesota's person tracker uses adaptive appearance models that explicitly account for the probability that a person may be partially occluded. All potentially occluding targets are tracked jointly, and the most likely visibility order is estimated (so we know the probability that person A is occluding person B). Target-size adaptation is performed using calibration information about the camera, and the reported target positions are made in real-world coordinates.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Mini-Whegs™

Author  Jeremy M. Morrey, Bram Lambrecht, Andrew D. Horchler, Roy E. Ritzmann, Roger D. Quinn

Video ID : 401

The video describes a new biologically inspired robot series called Mini-Whegs™. These 8-9 cm long robots can run at sustained speeds of over 10 body lengths per second and navigate in challenging terrain.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Extracting kinematic background knowledge from interactions using task-sensitive, relational learning

Author  Sebastian Hofer, Tobias Lang, Oliver Brock

Video ID : 671

To successfully manipulate novel objects, robots must first acquire information about the objects' kinematic structure. We present a method to learn relational, kinematic, background knowledge from exploratory interactions with the world. As the robot gathers experience, this background knowledge enables the acquisition of kinematic world models with increasing efficiency. Learning such background knowledge, however, proves difficult, especially in complex, feature-rich domains. We present a novel, task-sensitive, relational-rule learner and demonstrate that it is able to learn accurate kinematic background knowledge in domains where other approaches fail. The resulting background knowledge is more compact and generalizes better than that obtained with existing approaches.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Towards a swarm of nano quadrotors

Author  Alex Kushleyev, Daniel Mellinger, Vijay Kumar

Video ID : 213

This video shows experiments performed with a team of nano quadrotors at the GRASP Lab, University of Pennsylvania.

Chapter 67 — Humanoids

Paul Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto, Kazuhito Yokoi and Eiichi Yoshida

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration ofmany of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

Whole-body "pivoting" manipulation

Author  Eiichi Yoshida

Video ID : 595

The humanoid robot performs "pivoting" manipulation to carry a bulky object without lifting. A coarse path of the object towards its goal position is first planned to compute the trajectory of the hands which perform the manipulation. Then foot positions are determined along the object path, from which the COM trajectory is derived using the dynamic walking-pattern generator. Those tasks are provided to the inverse kinematics to generate the coordinated arm and leg motion for this complex manipulation. The second video shows the motion planning combining pivoting manipulation and free walking motion in a more complex environment.

Chapter 11 — Robots with Flexible Elements

Alessandro De Luca and Wayne J. Book

Design issues, dynamic modeling, trajectory planning, and feedback control problems are presented for robot manipulators having components with mechanical flexibility, either concentrated at the joints or distributed along the links. The chapter is divided accordingly into two main parts. Similarities or differences between the two types of flexibility are pointed out wherever appropriate.

For robots with flexible joints, the dynamic model is derived in detail by following a Lagrangian approach and possible simplified versions are discussed. The problem of computing the nominal torques that produce a desired robot motion is then solved. Regulation and trajectory tracking tasks are addressed by means of linear and nonlinear feedback control designs.

For robots with flexible links, relevant factors that lead to the consideration of distributed flexibility are analyzed. Dynamic models are presented, based on the treatment of flexibility through lumped elements, transfer matrices, or assumed modes. Several specific issues are then highlighted, including the selection of sensors, the model order used for control design, and the generation of effective commands that reduce or eliminate residual vibrations in rest-to-rest maneuvers. Feedback control alternatives are finally discussed.

In each of the two parts of this chapter, a section is devoted to the illustration of the original references and to further readings on the subject.

PID response to impulse in presence of link flexibility

Author  Wayne Book

Video ID : 780

A laboratory gantry robot with a final flexible link is excited by an external impulse disturbance. The video shows the very low damping of the flexible link under PID joint control. This is one of two coordinated videos, the other showing the same experiment under state feedback control. Reference: B. Post: Robust State Estimation for the Control of Flexible Robotic Manipulators, Dissertation, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (2013)

Chapter 32 — 3-D Vision for Navigation and Grasping

Danica Kragic and Kostas Daniilidis

In this chapter, we describe algorithms for three-dimensional (3-D) vision that help robots accomplish navigation and grasping. To model cameras, we start with the basics of perspective projection and distortion due to lenses. This projection from a 3-D world to a two-dimensional (2-D) image can be inverted only by using information from the world or multiple 2-D views. If we know the 3-D model of an object or the location of 3-D landmarks, we can solve the pose estimation problem from one view. When two views are available, we can compute the 3-D motion and triangulate to reconstruct the world up to a scale factor. When multiple views are given either as sparse viewpoints or a continuous incoming video, then the robot path can be computer and point tracks can yield a sparse 3-D representation of the world. In order to grasp objects, we can estimate 3-D pose of the end effector or 3-D coordinates of the graspable points on the object.

3-D models from 2-D video - automatically

Author  Marc Pollefeys

Video ID : 125

We show how a video is automatically converted into a 3-D model using computer-vision techniques. More details on this approach can be found in: M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch: Visual modeling with a hand-held camera, Int. J. Comp. Vis. 59(3), 207-232 (2004).

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Torque-control strategies for snake robots

Author  David Rollinson, Kalyan Vasudev Alwala, Nico Zevallos, Howie Choset

Video ID : 392

This video provides an overview of some initial torque-based motions for the series elastic snake robot (SEA Snake). Because the SEA Snake has the unique ability to accurately sense and control the torque of each of its joints, it can execute life-like compliant and adaptive motions, without a complex controller or tactile sensing.

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Antwerp biomimetic sonar tracking of a complex object

Author  Herbert Peremans

Video ID : 311

The Antwerp biomimetic bat head sonar system consists of a single emitter and two receivers. The receivers are constructed by inserting a small omnidirectional microphone in the ear canal of a plastic replica of the outer ear of the bat Phyllostomus discolor. Using the head-related transfer (HRTF) cues, the system is able to localize multiple reflectors in three dimensions based on a single emission. This video demonstrates that the reflector does not need to be a sphere for this spectrum-based localization algorithm to work. Despite the filtering of the echo signal by the reflector, no apparent confusion of the 3-D localization results.